Drilling the Elevator Horns

This is pretty much the last step on the empennage kit! It’s time to double check all the measurements and alignments and drill the last holes on the tail….the elevator horns.  I have read horror stories of people not getting this done correctly, and having to have the horns welded up and re-drilled.  So, I approached this with caution. Before mounting the elevators, I measured the eye bolts one last time with my dial calipers to make absolute certain that they were all to plan specs.  Then I started off by mounting both elevators and measuring them yet again through its entire travel.  I was getting well within the limits of Max up/down travel so I decided its time to drill.

I started off my removing the right elevator so I could drill the horn for the left.  Then, per the plans, I clamped the elevator so that its in trail with the chord line of the horizontal stabilizer.  We do this by clamping the elevator counterbalance skin to the horizontal stab skin using some scrap sheet aluminum and a few clamps.

Then I did a real good eye ball check to make sure the horn was going to be lined up, and I wouldn’t have any clearance issues after it was drilled.  This is something I had seen crop up on other builders, and some of the had issues getting the bolt head and nut to clear the horn assembly.  Luckily everything looked good, so I decided to drill.  Van’s tells us to use a drill bushing in the VA-146 bearing assembly to help align the hole on the horn.  I had picked up from some other builders that a 1/16″ ferrule and collet seem to work really great as a drill bushing and they are cheap at Lowes / Home Depot.  So, I visited the aviation section of my local Home Depot and picked up a few packs of these things:

The little collets are exactly 1/4 outside diamater and they fit perfectly in the bearing!   I had to use some gorilla tape on the end of the bearing to hold the collets from sliding out, and I ended up using a total of 4 of them in the bearing.

The tape does nothing but hold the collets in to keep my fingers out of the way. I found a drill bit that fit perfectly in the hole in the collets and used it to drill my pilot holes.  With a little bit of finesse and gentle drilling. I had my pilot hole done!

Next up was to drill the pilot for the right elevator, so I removed the left elevator and set it aside for now.  Then, I mounted up the right elevator, clamped the counterweight to the stabilizer and drilled its pilot hole using the exact same method as I did for the left.

Now its time to drill this pilot hole to its final size.  After removing the right elevator, I set both it and the left on my work bench to secure them for final drilling.  I decided against using the convenient step bit for this because they have a tendency to wander, and this is pretty precision work. I started out by drilling the holes out from smaller to large using these drill bit successions:  #40, #30, #27, #21, #12 and finally the 1/4 size needed for the AN4-14A bolt. Then, I deburred the holes.  The front side was easy, but the back side was a little tricky, so I got creative:

The angle drill worked great to get this tight spot deburred.  Now that the holes were drilled to the right size for both elevators, its the moment of truth: Checking for binding.   I re-mounted the elevators to the horizontal stabilizer, and then inserted the AN4-14A bolt through the horn, into the bearing and through the other horn……it fit! Everything aligned correctly and there was absolutely no binding at all in the entire hinge line.  Its moving through full deflection as smooth as butter.

The horns look a little wonky, and like they’d be out of alignment, but according to Van’s and the mindshare on Vans Airforce, this is totally normally due to the manufacturing differences in the horns. So long as the hinge line doesn’t bind there is nothing to worry about.  I do have plenty of clearance for the bolt head and nut to thread on nicely as well.  These parts are DONE!! I removed the elevators and then thoroughly tightened the jam nuts on they eyebolts.  The horizontal stabilizer and elevators will go on the shelf until they are ready to be mounted to the fuselage.

I still had a little steam and energy left, so I decided to test fit the rudder and make sure it’s in good shape.  I double checked the eye bolt depth with my dial caliper, and then mounted it to the vertical stabilizer and moved it through its full deflection and there was no binding! It also moves as smooth as butter and looks great.

With that, the tail kit is pretty much done! I am going to leave the fiberglass work until the very last of the build, and all thats left now is to drill a hole in the horizontal stabilizer and rudder horn for the tail light.  I am thinking I will go ahead and do this now, since its easy to get to and I have some spare bushings to use.  Then, I will label and bag up all the remaining mounting hardware (bolts, washers and nuts for the hinge lines) and put everything away until I get ready to mount it to the fuselage.

As a side note, I have ordered my Wing kit and am waiting on the invoice and crating dates.  Its looking like an 8 week lead time…but I will put that info in another post.  Here’s the photos for tonights work:

This slideshow requires JavaScript.

Google Photos Link:  https://goo.gl/photos/Qvx8CEUQNj1pvk9K7

Hours Worked: 2.5

Fitting The Elevators to the Horizontal Stabilizer

The empennage kit is wrapping up, and almost complete at this point.  All the major assembly is done, and now its just fitting the parts together and lining up the hinges to drill the elevator horns.  The first thing to do is make sure the eye bolts on the elevators are threaded in to the proper starting depth.  Van’s gives this dimensions in the plans, and I used a dial caliper to get the correct measurements.  After setting and adjusting the eye bolts to the proper thread depth on each elevator, it was time to re-arrange some furniture in the shop to mate the elevators to the horizontal stab.  Here’s how it ended up:

I moved my work benches so that I could drop the elevator horns between them, and then I could slide them back to the table edge to get full movement of the elevators to test their angles. Next up, I fit the elevators in their mounts, and marked the skin so that it could be trimmed to provide the 1/8″ clearance around the elevator horn.

Once I had my marks made, I used a #40 drill to drill the corner so it wouldn’t crack.

Then I snipped away the excess using the tin snips.

Now that I had both the top and bottom done, it was time to knock the rough edges down, and file the corners smooth.  A plain old bastard file made quick work of this, and I am pretty happy with the way it came out.

Once the left side was done, I moved over and did the same exact thing for the right side with equally satisfying results. I think at this point, I am getting the hang of sheet metal work! I am doing work that I’d be proud to show at Osh Kosh 🙂  Then, I decided to go ahead and re-fit the elevators to make sure all the clearances looked good, and that the elevator would move through its entire Max deflection as prescribed by vans.

I made a cheap little tool to help get the bolts inserted into the hinges.  This is a super tight area to work in, and there is hardly any room to get fingers in there to hold the bolts and insert them.  So, here is what I came up with:

Yep… that is a piece of Gorilla tape on the boxed end of a wrench! It worked pretty damn good!  I was able to snake the bolt down into the access hole, wiggle it into the hinge and fully insert it while holding the elevator in position.  Once I had the bolt in place, I could just twist the wrench and tape off the head and the bolt stayed right in place. I didn’t use any washers or nuts, since I am just test fitting everything together for now.  I want to make sure I have the eye bolts set correctly, and that the elevators can move their full range with no binding.

After checking both sides for binding, I used a simple little protractor to verify that the elevators each could move through their max deflection of 30 degrees up and 25 degrees down as instructed by the plans.  Being happy that they moved great, I decided to call it a night for now.  I still need to double verify using my digital angle finder and micrometer to make sure everything is perfect and then I will drill the elevator horns.  Thats work for another session! Here’s all of tonights photos:

This slideshow requires JavaScript.

Google Photos Link:  https://goo.gl/photos/AJgKvyhtcwidDZKn6

Hours Worked: 2

Bending the Left Elevator Leading Edge

After getting the right elevator bent,  it was time to move on the left.  This process is pretty much identical to the right elevator, so I will leave out all the details.  I did it exactly this one the same way as I did the right.  First up is to break the edges of the top skin to help the lap joint form a nice tight lap.  I used my edge breaking tool to do this.  Then, starting out by bending the top skin leading edge, I used a dowel rod and gorilla tape to roll it to the right bend, and then finished it off with my hands.  I did the same with the bottom skin.   Once all the bends were made, I clecoed them together.

The next step is to match drill all the holes to a #30 hole for the AD-41-ABS blind rivets. I did one hole at a time, and replaced it with a 1/8 inch cleco as I went. Once all the holes were drilled to the proper size, I unclecoed everything and deburred the holes with a scotchbrite pad.  Then, re-assembled everything back with the clecos to hold them in place while I set the blind rivets. I worked my way down the leading edges, removing a cleco and setting a blind rivet as I went.  Eventually, it was all riveted together and looking good:

The last step for the night was to install the AN316-6 jam nut onto the  MD3614M rod end bearing, and then insert that into the plate nuts on the spar.  I used Boelube on the threads to make this a bit easier, because platenuts can be hard to thread into.  I don’t have my rod end bearing tool made yet to thread these all the way in, nor do I have a caliper to measure the distance, so I just threaded them in a few turns and I will come back and get them set to the proper depth when I have those tools.  I need to do this to the right elevator as well.  Here’s the photos from tonights work:

This slideshow requires JavaScript.

Google Photos Link: https://goo.gl/photos/Krv1f4cjMnk98k5NA

Hours Worked: 1.25

Closing up the Elevators

Tonight I was able to close up and rivet both the left and the right elevators. They had been setting and letting the proseal cure, and now it was time to close them up for good.  I started out with the easiest one first, the right elevator.  This one is pretty simple, as there is no trim tab to deal with. I removed every other cleco, inserted a rivet and then squeezed them with my squeezer.

Since this is all along the edges, I was able to use my squeezer on all but one rivet.  I was not able to get the nose of the squeezer in the very last rivet closest to the trailing edge.  There was just not enough room to get it in there and squeeze. I am thinking I will use a blind rivet in that one hole, which is perfectly acceptable by Vans’s plans, and even recommended for the very end holes due to the tightness of them.  All the rest of the rivets were perfect.

I was able to set every rivet except that one on the end. I will set the elevator to the side, and make a note on this one rivet.  Once I make a decision I will come back to it .  I do think a blind rivet is the way to go, since it doesn’t involve risking any damage to an otherwise perfect elevator.  On the the left elevator!

I did pretty much the same thing on the left elevator as the right: Started by removing every other cleco, then riveting those empty holes.  The only exception was the work around the trim tab.  I left the trim tab off for now, but placed the forward portion of the hinge to the elevator and clecoed it on.  The I very gently used a long nose squeezer with a set that would let me get behind the hinge bends to set the rivets.  I did this slowly and carefully to avoid bending the hinge, and it turned out great.

Then, I moved over to the few blind rivets that the left elevator requires.  There are a few MK319BS blind rivets that we need to use on the E-701 skin to the E-606PP spar on the very outboard sections, 4 total.  I set them and made sure they were completely flush.  Then I moved over to the bent tabs on the elevator at the trim tab section, and riveted them with MSP-42 blind rivets per the plans.

The left elevator came out looking really great. I stuck the trim tab on the elevator with the hinge pin to make sure everything still lined up good. The plans has us attach the trim tab by bending the pin, but I did not feel comfortable putting the elevator in storage with the trim tab attached and it flopping around.  I think I will leave it off to keep it safe. That’s all for tonight.  Here are all the photos:

This slideshow requires JavaScript.

Google Photos Link: https://goo.gl/photos/DN8NBZXz4HrbjCLw8

Hours Worked: 1.5, 1.5

ProSeal Party!

Today was actually a pretty fun day.  I decided to wait on prosealing the rudder and elevators until I could do it all at once, and save on the cost of mixing up two different tubes for two different sessions.  I also took advantage of having some helpful friends to come by and lend a hand at this super messy task, with the promise of feeding them some of Tammy’s awesome “Mississippi Mud Pot Roast” as payment for their help.  One of the helpers has had experience with ProSeal before, so he gave us some tips on using this stuff.  Best tip:  Double glove….

We started out by un-cleocing the trailing edge of the rudder so we could get the trailing edge wedge out and clean it.  I used acetone to wipe down the wedge as well a both sides of the skin to make sure we get good adhesion, although after using ProSeal, I think this stuff would stick to anything. Once we had the parts cleaned off, we mixed up the tube of Proseal.  This was actually a neat setup, and the rods made it pretty easy to get it all mixed up and proportioned correctly.   Then we gooped on a decent portion on the trailing edge wedge, and smeared it to a nice even consistency using the pieces of some clothespins.

Having plenty of hands made this job go much smother.  One guy squirted on the Proseal from the caulking gun, while we smoothed it out using the ends of the clothespins and pieces of some paint mixing sticks.  Once we had the wedge good and covered with this sticky mess, two guys held the ends of the wedge, while me and the other helper held the trailing edge of the skins open just enough so they could slide the wedge in place. We lined it up with the holes and then used a few clecos to hold it until we could set it aside and then cleco it down to the 2×2 angle aluminum which serves as our straight edge.  Before clecoing it down to the straight edge, I did run my finger using some force along the the trailing edge to make sure all the excess Proseal was squeeezed out to prevent pillowing between the clecos. Then, once we had all the clecos inserted, we went back and placed some clothes pins in between the clecos to help clamp it down even further. I also gave each one of the clothes pins an extra “squeeze” every so often by pinching the down on the nose of them.


With the rudder ready to be set aside and cured, we moved on to the elevators.  I wanted to put a decent glob/dab of ProSeal at the ends of the stiffeners near the trailing edges.  This is supposed to help fight off any vibration and keep the stiffeners from cracking, so I figured its worth the little bit of time to go ahead and do this.  We started out by unclecoing both elevators, and then using a combination of paint mixing sticks, the caulking gun and finese to get a good blob of Proseal on each stiffener junction.  Again, having several sets of hands REALLY made this job much easier.  We ended up using nearly the whole tube (medium sized tube from Vans) on the rudder and both elevators.

After we had both elevators prosealed, we clecoed them back together, and I will finish riveting them in a few days once the Proseal cures. Just some words of advice:

  1.  Proseal is incredibly sticky, and WILL get everywhere.
  2. Double glove…it makes it easy to pull off your outer layer, and slip on a new set. Sweaty hands from the gloves are hard to get a fresh pair on, so double gloving avoids this problem
  3. This stuff smells like sewer and new tires. Make sure you have good ventilation. Its not as bad as AKZO, but man, its a weird smell.
  4. It has a pretty decent working time of about an hour or so. Maybe more if you are willing to risk it.  It was a little cold in the basement, so we didn’t want to chance it.

Here’s the whole photo album:

This slideshow requires JavaScript.

Google Photos Link: https://goo.gl/photos/4fRLG915Z8FAGnmZ6

Hours Worked: 1.25

Riveting the Left Elevator

The primer has dried and cured on my left elevator parts, so theres only one thing left to do… Start assembly and riveting! I started out the session by bending the tabs on the elevator skin.  On this left skin, there are two tiny little tabs that must be folded over, just like the trim tab, in order to close the edge where the trim tab sits.  These also support the outboard edge of the skin, much like a rib would.  This is a very delicate operation, and one that can go wrong quickly.  When I bent the trim tab, I had a second one for a spare so I didn’t worry.  With this skin, I only have the one, and I have a ton of work in it already! I used the same bending blocks as I did for my trim tab, since the angles are pretty much identical.  I inserted the block and clamped it down to the bench.  I used a straight edge held against the block of wood to make sure I had it right on my bend line.

We bend the bottom tab first, and then fold the top tab over the top this way we form a lip that allows water to run over the skin, and not get trapped between the tabs, or worse, get inside the skin! Notice my note to myself (1 st!) so I don’t bend the wrong tab first.  I used a large block of wood and a small hammer with light taps to bend the bottom tab into position.  Once I had the bottom tab where I liked it, I did the same with the top tab, and the end results were decent.  While they are not perfect, and have a few tiny dents from the bending, I am happy with them as they are.  The dents wont be visible since they are on the inside of the edge and will have the trim tab butted up against them.

Next up, I  dimpled all the parts and skin.  I like to dimple after priming because it makes scuffing in preparation for priming so much easier.  I dimpled the skin, spar, end ribs and all associated parts for the left elevator.  I used a combination of my squeezer and the DRDT-2.  I had to use my squeezer on the skin this time, due to how tight the trailing edge is.  Once I had all my parts dimpled, I continued on with the rest of the plans.  In the section titled “Riveting the Left Elevator”, Van’s has us start out by riveting E-704 End Rib and E-703 counterbalance rib together.

After that, we move on to riveting the E-610PP and E611PP reinforcement plates to the E-702 spar, along with the E-00001A and E-00001B doublers and the rivnuts. We have to be very careful here, as there are three different rivet lengths that attach all these together. I used the squeezer to set all these rivets.

I was running a bit out of gas, so I decided to finish up the session by knocking one more simple little part:  The trim tab servo plate and brackets.  This is a simple part and only requires about 6 rivets.  I used the squeezer to set these flush rivets, and then test fitted the servo to make sure it was still all in alignment.  It came out great.

Thats all for tonight.  I still have a little bit more riveting to complete, so I will leave that for the next session.  I have also spoken with my local EAA Tech Counselor, and he’s going to come by this Saturday afternoon to give my project a look.  I still have the horizontal stabilizer, vertical stabilizer and elevators to close up, so I will leave them until he can inspect them before closing them up.  Here’s all the photos for tonight:

This slideshow requires JavaScript.

Google Photos Link: https://goo.gl/photos/MEyHbRc28WovGerUA

Hours Worked: 3

Priming the Last Parts of the Empennage!

Well, tonight was priming night, and its the last priming session for the entire empennage! I am kind of glad to be honest, spraying AKZO is an ordeal with all the PPE and prep work that has to be done.  However, it leaves an absolutely awesome primed surface, that is incredibly durable so I guess its worth the trouble.  I only had a few remaining parts from the left elevator that needed priming, and I have decided I am not priming the trim tab.  Its a super small piece, and the assembly work left the trim tab fairly closed, so I wouldn’t get much coverage in it anyways.  Even if the trim tab starts corroding (it won’t its alclad), the entire thing will cost about $50 in parts to replace, and maybe 8 hours of work. The trim tab finished out so well, that I didn’t want to chance ruining it by trying to prime it.

Here’s my obligatory priming selfie!!!

Like all priming sessions, I started out by scuffing up the parts with maroon scotchbrite pads.  These things work great at scuffing the alclad surface, but not removing it.  I essentially am just removing any of the alclad surface corrosion and giving the primer a good surface to “bite” onto.  Once I had all my parts scuffed up, I did a quick wipe with a microfiber cloth to remove the dust that scuffing leaves behind.  I have found this small step makes it WAY easier to clean with acetone.  Once I had the dust off the parts, I cleaned each one with acetone 3 times each and using a clean side of a paper towel every time.  I like to clean the parts until the white paper towel pulls away clean from the part.

Then, I mixed up the AKZO and let it kick-off for the 30 minutes it needs, stirring it occasionally.  I made 4 ounces of AKZO for this small batch and then poured it into the PPS cups for my HVLP sprayer.  While the AKZO was kicking-off, I suited up into my tyvek suit, donned my full face mask and sealed off the spray booth and ventilated it outside.  Like usual, AKZO sprays super easy, and covers wonderfully with an HVLP.  Usually once quick pass is enough to cover the part completely, with only needing a few small touch up’s in the shadowy areas.

Once I had all the parts sprayed on both sides, I cleaned out my sprayer and I’ll leave the parts to cure for a few days.  AKZO dries really fast, and is workable in a few hours, but I like to let it completely cure before working with it.  Its very scratch resistant if you do.  Not many photos tonight, because, well its priming.  Its pretty much the same as the other priming sessions 🙂  Here’s the ones I did take though:

This slideshow requires JavaScript.

Google Photos link: https://goo.gl/photos/Bm6Ck64TDSQRLVNj7

Hours Worked: 3.25

Building the Trim Tab

I started this session by first dressing the edges of the left elevator skeleton parts, but that only took about 30 minutes, so I decided to find something else to work on.  Since those parts are waiting on priming, the only thing I have left to start on is the trim tab.  I read the plans and decided to give it a go and try to get the end tabs bent, and some work done of the trim tab itself. I managed to almost finish the trim tab assembly tonight 🙂

After dressing up the edges of those left elevator parts, I laid them up on the shelf and dug out the trim tab parts.  First we have to start off by bending the trailing edge of the skin for the trim tab, and this is done exactly like the elevators.  So I set up my bending brake  and put a very smooth and gradual bend on the trailing edge, and made sure it was straight with the spar in place.

Granted, I took my time on this, I got it done in about 20 minutes or so.  I have been reading up on bending these tabs for a while now, and watched the Orndorff videos, so I was pretty prepared to begin.  I started out by making some bending blocks that fit into the end of the trim tab.  I used the tab itself to draw an outline on a piece of 2×4 and then cut the shape out on my bandsaw.  I made two sets because the bends on each end are at slightly different angles.

With the bending blocks made up, its time to get to bending the trim tab! I start out by inserting the blocks and clamping everything down to my work table nice and tight so it doesn’t move during bending.

We start out by bending the bottom tab first, and overlapping it with the top tab, so that the top tab folds over the bottom, helping to keep water and debris from getting into the trim tab.   I used a block of wood in my hand to get the bend started and once I had it at about a 45 degree angle, I use a small hammer against my wood block to help shape the metal.  This way, I am using the soft face of my wood block against my tab and the bending block instead of the hard metal face of the hammer.  This keeps from dinging, denting and scuffing the aluminum.  I took lots of time and did this very slowly, using small light taps with the hammer against my block to bend the metal.  Once I had the bottom tab bent up to a 90 degree bend, I did the exact same to the top tab, bending it to overlap the bottom.   I am really happy with the results.

Now that we have the inboard side of the trim tab bent, it time to move to the outboard.  These tabs are MUCH smaller than the inboard side, so I had to take extra caution on these little suckers.  They would be easy to crack if you work the metal to much.  Eventually, I got them folded up, overlapping the bottom tab with the top just like on the other side.  I stuck the spar into the trim tab and clecoed it in a few spots to check my work, and I am happy with how it turned out!

Outboard Tabs

Inboard Tabs

After having a good victory on the tab bending, I still felt good enough to continue on working. The plans have us mount the E-717 and E-718 trim tab horns to the bottom of the trim tab.  E-717 has 3 of the 4 holes pre-drilled, so its easy to line up.  Then I just clamped E-718 to E-717 with some side clamps, and then use one of the clevis pins and hinges from my electric trim kit to make sure the holes were lined up properly in the trim tab horns.  Once everything was lined up, I back drilled both of the trim tab horns to the trim tab.

So, next up was to fully cleco on the spar, and then attach the hinge bracket so it can be back drilled.  I studied the plans and made a few alignment marks on my E-721 trim tab hinge.  Vans gives the measurements to the center of the hole in the skin/spar so its easy to mark the hinge with a sharpie, and then line up the cross hairs with the center of the hole.  I also marked the entire centerline of the hinge to the measurements Vans gives with a sharpie so I could align every single hole.  Once I had them all aligned, I used some cleco side clamps to hold it all together.  Once I had the hinge clamped on firmly, I started back drilling using the holes in the E-619-PP trim tab skin as my guides.

Once I had the hinge back drilled, I flipped the trim tab over and match drilled all the holes on the bottom to the spar.  Now, the plans has us disassemble the trim tab, so that we can trim off any excess from the trim tab horns, as well as the excess from the inboard side of he E-721 hinge.  I went ahead and trimmed off the very little bit of excess on the E-718 and E-717 trim tab horns, and smoothed the edges with a scotchbrite pad, and then did the same to the little bit of excess on the E-721 hinge.  I figured this was a good place to stop, so I called it a night.  I still need to deburr the holes, dress the edges of the trim tab parts and then dimple it all.  I am contemplating if I should prime the trim tab or not, not sure yet.  Here’s all the photos I took tonight:

This slideshow requires JavaScript.

Heres the Google Photos Link: https://goo.gl/photos/nFHQysMhoQBFDwdJA

Hours Worked: 4

Assembling the Trim Servo and Deburring Parts

I got to do some pretty neat assembly work tonight, working with actual aircraft components, instead of just aluminum!  I worked on assembling the mounting brackets for the Ray Allan Electric Trim servo. I also deburred all of the metal parts for the left elevator skeleton.  The work session started out by unboxing the electric trim servo.  Van’s ships this assembly as an option for the RV-7, and they include all the mounting brackets, screws, nutplates, rivets and hardware thats needed to fully install it.  Another testament to how well Van’s build their kits!

I started out by studying the plans to note the proper orientation of all the parts.  There are quite a few custom bent brackets and they need to be lined up just right in order to drill the holes correctly.  The plans gives us some measurements to place the EET-602B-L mounting bracket.  I decided to mount the E-616PP cover plate to the skin so I could draw an outline of where the ribs and skin lay on the cover plate.  This will keep me from mounting the brackets to close and causing interference, and I also made sure to notate the orientation of the plate in reference to the aircraft as well.  Once I had that all marked up, I used a straight edge to mark lines on where the plans tells us the forward edge and inboard edges of the EET-602B-L bracket. Then I placed the servo bracket on the plate, using my lines as a guide and clamped it on with cleco side clamps.  Once I verified that the bracket was where it needed to be, I drilled the holes and attached it with normal clecos.  Now that the hard one was done, I just stuck the servo in that bracket, and then placed the right side bracket and used the servo attaching bolts to hold it while I drew and measured its placement on the E-616PP plate.

When I was happy it was in the right spot, I removed the trim servo and match drilled the holes into the E-616PP plate using the bracket as my guide.  Stuck in some clecos, and made sure it all fit perfectly.

Happy with how the trim system went in, I decided to drill a 3/8 hole in the elevator spar, just above where the stock hole is.  I will use this 3/8 hole and a snap bushing to run the wiring for the servo, and the stock hole for the servo jack shaft.  This way, I don’t have any wearing or chaffing of the wiring, and there is less chance of the jack shaft binding on the wires.  This is a suggested procedure per Van’s.  You can see the smaller 3/8 hole just above the larger stock hole in the photo below:

Once that was all done, I decided to go ahead and deburr all the holes in my left elevator skeleton.  I spent about an hour or so doing this, and got all the parts deburred and ready for dressing the edges.  I will do that tomorrow night, and then these last few remaining parts will be ready for priming.

That was a good stopping point for the night, so I cleaned up the shop, swept up all the metal shavings and called it a night. Here is the full album of all the photos:

This slideshow requires JavaScript.

Google Photos Link: https://goo.gl/photos/P4WYQJMj8xHAjkyD6

Hours Worked: 2.25

Preparing the Left Elevator

I managed to get a TON of work done tonight, and worked a straight 4 hours on the section of plans titled “Preparing the Left Elevator”.  In a nut shell, I completely build entire left elevator, and have it disassembled so all the parts can be deburred, and the edges finished.  After that, I will shoot them in AKZO primer and then they will be ready to be dimpled and riveted. This is going to be a long post, since I got so much work done tonight, so hang on!

We start off the right elevator in pretty much the same fashion as we did the left, since they are almost identical (except for the trim tab). It starts by rounded off the top and bottom edges of the E-00001A doubler so that it will nest correctly in the E-702 spar channel.

After that, we cleco on the E-610PP and E-611PP doublers on the back side of the spar, as well as the E-00001A and E-00001B doublers on the front side.  These doublers are a part of SB-14-02-15  which was included in my tail kit.  Once all the doublers are clecod on, we match drill them to the E-702 spar.

After that, we straighten the flanges and flute both the E-703 and E-704 ribs, and then cleco E-703 end rib and E-704 counterbalance rib together, and then match drill them.  This takes a little time as I had to flute them in several places to get them straight and flush with each other.  In the end, they cooperated and fit together snugly.  Then Vans has us fit them to E-702 spar and match drill the holes to the spar. Once they are drilled, we remove the rib assembly from the spar to fit the lead counterweight.

This is where I messed up on the previous elevator and had to order a new E-713 counterbalance skin, and another E-714 counterweight.  That cost about $40, and they showed up at my house today! Talk about perfect timing! It takes a little bit of filing on the lead counter weight to get it to match the curvature of the E-713 skin and to fit snuggly.  I also double checked to make sure I had the orientation correct so I don’t repeat my mistake from last time 🙂 Once they counterweight has been shaved and filed down to fit good, we assemble the lead counterweight, the E-713 counterweight skin, and the E-703/E-704 rib assemblies to drill the counterweight.

When drilling lead, I decided to use a #30 drill bit in the pre-punched holes as a pilot, and follow it with the proper size #12 bit, using LOTS of Boelube to keep the bits lubricated. Clamping the assembly to the corner of my work table made this much easier to do as well.  I used my electric drill instead of the pneumatic because I need slow speed with lots of torque to drill the lead.  This worked out great, and the holes were straight and perfect.

Now that the counterweight is drilled, we remove it from the assembly and set it aside for now, this makes assembling the skeleton much easier to deal with. We then re-cleco the E-703/E-704/E-713 assembly to the E-702 spar.  Then we cleco on the E-705 root rib and match drill it using a #40 bit to the E-702 spar.

Its skining time now!  I clecod on the E-701-L skin to the newly built skeleton, making sure to keep the E-701 skin on TOP of the E-713 counterbalance skin. Next, Vans has us remove the clecos holding on the E-705 root rib to the E-702 spar, so that we can fit the WD-605-1-L elevator horn and match drill it to the E-705 and E-702.  I match drilled these to a #30 size drill.

Once we have the elevator horn drilled, I inserted the little E-606PP spar into the skin, and clecoed it to the E-705 root rib and E-701 skin. I also had to match drill the E-606PP to the E-705.  At this point, I have my entire right elevator assembled and ready to be match drilled.  I matched drilled the E-701-R skin to its skeleton using a #40 bit per the plans.

You guessed it…its time to disassemble the elevator so that I can deburr, dress the edges, prime, and dimple them.  At this point, I noticed that my cleco bucket was running pretty low:

After getting the elevator disassembled, I decided to continue on and finish up the last few little easy steps in this section of the plans.  I had to machine countersink the E-714 lead counterweight to match the dimple and screw, so I did this with my deburring tool, which worked nice. Then I used a #10 dimple die to dimple the E-713 counterweight skin to match. I checked all these with the screw to make sure it looked great.

Now, this is where it gets a little tricky.  The little E-606PP spar needs to be machine counter sunk on the top to mate with the dimples in the skin.  We machine countersink it because we don’t want the protruding dimple on the underside of the spar because the trim tab hinge gets riveted to it on the bottom. However, we are able to dimple the BOTTOM of the E-606PP spar so it will mate with the skin dimple, and because there isn’t anything that will interfere with the dimple protrusion on the spar.  This drawing makes it easier to see:

So, I deburred all the holes, and chucked up my countersink cage in my drill and countersunk every hole along the TOP of the E-606PP, checking each one with a rivet to make sure it was flush.  Then I used my squeezer and a 3/32 dimple die to dimple the BOTTOM of the E-606PP, except for the last two holes.  They were too tight to fit the squeezer, and the spar was too thick for the pop rivet dimple die, so I just machine countersunk the last two holes on the bottom.  Simple and easy solution!

Then I machine countersunk the two holes that attach the E-606PP to the E-705 root rib, orienting the countersink so that the flush rivet will go in with the flush head on the aft face of the E-606PP.  This will eliminate any chance of interference during the trim tab travel, and make it look nice and neat in this area. The plans said we could do the countersink on either side of the hole, so I chose to do it this way. Then, I dimpled the holes for the E-705 to R-702.  Vans calls for this to be machine countersunk, due to the sharp bend on the E-705 root rib, making it hard to dimple, but I was able to get my dimple dies in there and squeeze them without any problems. We have to use flush rivets here because the WD-605-1-L elevator horn fits over this intersection.  Lastly, the only thing left in this section is to bevel the edges of the E-713 counterweight skin so that the E-701 will overlap it very smoothly where they meet.  I used my file to work the edges into a nice bevel where the two skins meet.  This worked out very nicely on the right elevator, so I used the same technique here.

With that, the right elevator has been assembled and ready for all the parts to be dressed.  In the next few sessions I will work on deburring all the holes (so many holes deburred at this point!), dressing all the edges with the scotchbrite wheel and then priming them.  Follow that with dimpling and final assembly!  Here is the photo album from tonights work:

This slideshow requires JavaScript.

Google Photos Link: https://goo.gl/photos/rpvXUguFpbjwQyqd7

Hours Worked: 4